

Date: 17-04-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

SECTION A - K1 (CO1)

	Answer ALL the Questions	(10 x 1 = 10)
1.	Definitions	
a)	Trace of a matrix.	
b)	Fundamental system of solutions.	
c)	Linear independent set of vectors.	
d)	Matrix polynomials.	
e)	Congruence of matrices.	
2.	Fill in the blanks	
a)	The transpose of a cofactor matrix of the square matrix is called the _____.	
b)	A system of linear equations $AX = B$ is said to be inconsistent if the system has _____.	
c)	Any ordered n-tuples of numbers is called an _____.	
d)	If λ is an eigenvalue of a non-singular matrix A then an eigenvalue of A^{-1} is _____.	
e)	The ranges of values of two congruent quadratic forms are the _____.	

SECTION A - K2 (CO1)

	Answer ALL the Questions	(10 x 1 = 10)
3.	True or False	
a)	The diagonal elements of a skew-symmetric matrix are all non-zero.	
b)	'A' is an $m \times n$ matrix then the determinant of every square matrix of 'A' is called a major of matrix 'A'.	
c)	The rank of the sum of two matrices cannot exceed the sum of their ranks.	
d)	The characteristic roots of the skew-Hermitian matrix are either pure imaginary or zero.	
e)	Every matrix congruent to a symmetric matrix is a symmetric matrix.	
4.	Answer the following	
a)	If A is a Hermitian matrix, show that iA is skew Hermitian.	
b)	Find the rank of matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}$	
c)	Show that the vectors $X_1 = (1, 2, 3), X_2 = (2, -2, 0)$ form a linearly independent set.	
d)	Determine the eigenvalues of the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.	
e)	Write the matrix form for the following quadratic form : $x_1^2 - 18x_1x_2 + 5x_2^2$	

SECTION B - K3 (CO2)

	Answer any TWO of the following	(2 x 10 = 20)
5.	<p>(i) If $A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$, find AA' and $A'A$</p> <p>(ii) Show that $\Delta \equiv \begin{vmatrix} 4 & 5 & 6 & x \\ 5 & 6 & 7 & y \\ 6 & 7 & 8 & z \\ x & y & z & 0 \end{vmatrix} = (x - 2y + z)^2$</p>	

6.	Find the adjoint of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$ and verify $A(\text{adj } A) = (\text{adj } A)A = A I_n$.
7.	Apply the test of rank to examine if the following equations are consistent: $\begin{aligned} 2x - y + 3z &= 8 \\ -x + 2y + z &= 4 \\ 3x + y - 4z &= 0 \end{aligned}$ and if consistent, find the complete solution
8.	Prove that the characteristic roots of a Hermitian matrix are real.
SECTION C – K4 (CO3)	
Answer any TWO of the following (2 x 10 = 20)	
9.	(i) Prove if p and q are two scalars and A is any $m \times n$ matrix, then $((p + q)A = pA + qA)$. (ii) Prove if A and B are two matrices each of the type $m \times n$, then $k(A + B) = kA + kB$.
10.	Find the rank of the matrix $A = \begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4 \end{bmatrix}$
11.	Solve completely the system of equations: $\begin{aligned} x + y + z &= 0 \\ 2x - y - 3z &= 0 \\ 3x - 5y + 4z &= 0 \\ x + 17y + 4z &= 0 \end{aligned}$
12.	Explain the linear transformation of quadratic form.
SECTION D – K5 (CO4)	
Answer any ONE of the following (1 x 20 = 20)	
13.	(i) Prove that $\Delta \equiv \begin{vmatrix} a^3 & 3a^2 & 3a & 1 \\ a^2 & a^2 + 2a & 2a + 1 & 1 \\ a & 2a + 1 & a + 2 & 1 \\ 1 & 3 & 3 & 1 \end{vmatrix} = (a - 1)^6$ (ii) Solve the following system of linear equation with the help of Cramer's rule $\begin{aligned} x + 2y + 3z &= 6, \\ 2x + 4y + z &= 7, \\ 3x + 2y + 9z &= 14. \end{aligned}$
14.	(i) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$ (ii) Determine a non-singular matrix P such that $P'AP$ is a diagonal matrix, where $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0 \end{bmatrix}$
SECTION E – K6 (CO5)	
Answer any ONE of the following (1 x 20 = 20)	
15.	(i) Prove that $\Delta \equiv \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ yz & zx & xy \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = (y - z)(z - x)(x - y)(yz + zx + xy)$. (ii) Find the inverse of the matrix $S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ and show that SAS^{-1} is a diagonal matrix where $A = \frac{1}{2} \begin{bmatrix} b + c & c - a & b - a \\ c - b & c + a & a - b \\ b - c & a - c & a + b \end{bmatrix}$.
16.	(i) Obtain the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and verify Cayley- Hamilton theorem and find the inverse of the matrix A .

(ii) Reduce the following quadratic form to canonical form and find its rank and signature:
$$x^2 + 4y^2 + 9z^2 + t^2 - 12yz + 6zx - 4xy - 2xt - 6zt.$$